Error Tolerant NMR Backbone Resonance Assignment and Automated Structure Generation
نویسندگان
چکیده
Error tolerant backbone resonance assignment is the cornerstone of the NMR structure determination process. Although a variety of assignment approaches have been developed, none works sufficiently well on noisy fully automatically picked peaks to enable the subsequent automatic structure determination steps. We have designed an integer linear programming (ILP) based assignment system (IPASS) that has enabled fully automatic protein structure determination for four test proteins. IPASS employs probabilistic spin system typing based on chemical shifts and secondary structure predictions. Furthermore, IPASS extracts connectivity information from the inter-residue information and the (automatically picked) (15)N-edited NOESY peaks which are then used to fix reliable fragments. When applied to automatically picked peaks for real proteins, IPASS achieves an average precision and recall of 82% and 63%, respectively. In contrast, the next best method, MARS, achieves an average precision and recall of 77% and 36%, respectively. The assignments generated by IPASS are then fed into our protein structure calculation system, FALCON-NMR, to determine the 3D structures without human intervention. The final models have backbone RMSDs of 1.25Å, 0.88Å, 1.49Å, and 0.67Å to the reference native structures for proteins TM1112, CASKIN, VRAR, and HACS1, respectively. The web server is publicly available at http://monod.uwaterloo.ca/nmr/ipass.
منابع مشابه
Error Tolerant NMR Backbone Resonance Assignment for Automated Structure Generation
Error tolerant backbone resonance assignment is the cornerstone of the NMR structure determination process. Although a variety of assignment approaches have been developed, none works well on noisy automatically picked peaks. We have designed an integer linear programming (ILP) based assignment system (IPASS) for this purpose. In order to reduce size of the problem, IPASS employs probabilistic ...
متن کاملTowards Automated Structure-Based NMR Resonance Assignment
We propose a general framework for solving the structurebased NMR backbone resonance assignment problem. The core is a novel 0-1 integer programming model that can start from a complete or partial assignment, generate multiple assignments, and model not only the assignment of spins to residues, but also pairwise dependencies consisting of pairs of spins to pairs of residues. It is still a chall...
متن کاملTowards Fully Automated Structure-Based NMR Resonance Assignment of 15N-Labeled Proteins From Automatically Picked Peaks
In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonan...
متن کاملTowards Automating Protein Structure Determination from NMR Data
Nuclear magnetic resonance (NMR) spectroscopy technique is becoming exceedingly significant due to its capability of studying protein structures in solution. However, NMR protein structure determination has remained a laborious and costly process until now, even with the help of currently available computer programs. After the NMR spectra are collected, the main road blocks to the fully automat...
متن کاملIPASS: Error Tolerant NMR Backbone Resonance Assignment by Linear Programming
The automation of the entire NMR protein structure determination process requires a superior error tolerant backbone resonance assignment method. Although a variety of assignment approaches have been developed, none works well on noisy automatically picked peaks. IPASS is proposed as a novel integer linear programming (ILP) based assignment method. In order to reduce size of the problem, IPASS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioinformatics and computational biology
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2011